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1 Введение
В работе будут проанализированы условия нестабильности звёзд, приводящие их

к гравитационному коллапсу; особенности состояния вещества в ядре на поздней стадии
звёздной эволюции; диффузный перенос нейтрино в сверхплотном веществе. Также в
работе будет получена теоретически формула спектра нейтринного излучения от всех
сверхновых во Вселенной. В соответствующих главах будут рассмотрены механизмы
стандартного и двойного коллапсов. В работе будет получен диффузный нейтринный
поток на Земле, исходя из известных астрофизических параметров звёздной эволюции.

2 Физика рождения нейтрино в сверхновых

2.1 О сверхновых

Вспышка сверхновой - грандиозное событие во Вселенной. Считается, что эволю-
ция звёзд масс (8÷ 10)M� завершается именно вспышкой сверхновой. Вспышка сверх-
новой является одной из мощнейших явлений во Вселенной, блеск сверхновой в пике
может даже превзойти яркость целой галактики. Для наблюдателя явление сверхно-
вой интересно сразу в нескольких каналах излучения: в нейтринном и электромагнит-
ном. Последнее, правда, интересно лишь для сверхновых типа Ia, которые являются
стандартными свечами в астрофизике. Важность изучения сверхновых мотивирована
изучением химической эволюции Вселенной, так как благодаря выбрасываемому веще-
ству в ходе вспышки, синтезированное вещество посредством термоядерного синтеза
разносится по галактике, тем самым это является одним из источников увеличения ме-
талличности вещества во Вселенной.

2.2 Классификация сверхновых

Современная классификация сверхновых разделяет их по спектральным характе-
ристикам и по особенностям взрыва [1]. Сверхновые подразделяются на два основных
типа: SN I - имеют линии водорода в спектре электромагнитного излучения, SN II - их
не имеют.

Тип сверхновых Подтип Характерные
черты спектра Особенности взрыва

I
a Нет линий H;

есть линии Si Термоядерный взрыв

b Нет линий H, Si;
есть линии He Гравитационный

коллапс ядраc Нет линий H, Si, He
II Есть линии H

Таблица 1: Классификация сверхновых

Несмотря на особенности спектра сверхновые типов Ia, Ib, Ic и II взрываются похо-
жим образом: почти мгновенное энерговыделение огромной энергии порядка ≈ 1051 эрг,
которая переходит в кинетическую энергию отлетающей оболочки звезды; увеличение
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блеска связано с нагревом внешних слоёв ударной волной, которая связана с отскоком
падающих слоёв на сколлапсировавшееся ядро звезды с плотностью порядка ядерной
ρ ≈ 1014 г/см3.

2.3 Гидростатическое равновесие звезды

Рассмотрим сферический слой звезды. На данный сферический слой действуют
сила гравитации и сила давления. Тогда сила давления, действующая на элемент сфе-
рического слоя dV = (r · dS), находится по формуле

dFp = −PdS = −r∂P
∂r

dS = −∇PdV. (1)

Сила притяжения, действующая на элемент сферического слоя, есть

dFg = −∇φ(r)dm, (2)

где φ(r) = −
∫∞
r
Gm(x)/x2dx. При гидростатическом равновесии звезды равнодейству-

ющая сила, действующая на элемент сферического слоя, равна нулю:

1

ρ
∇P +∇φ = 0. (3)

Рассмотрим звезду как газовый шар, следовательно, M(r) =
∫ r

0
4πx2ρ(x)dx, ∇φ =

GM(r)/r2, элемент массы сферического слоя есть dm = 4πr2ρ(r)dr. Тогда получим

4πr2 dP

dm
= −GM(r)

r2
. (4)

С учётом граничных условий на давление снаружи (давление на поверхности равно
нулю) получим:

U = −
∫ M

0

GM(r)dm

r
= −

∫
PdV. (5)

С очень хорошим приближением любую звезду без вырожденного газа можно считать
идеальный газом, подчиняющемуся закону Менделеева-Клапейрона P ∼ ργ, где γ =
d(ln(P ))/d(ln(ρ)); внутренняя энергия звезды есть
ε = P/((γ − 1)ρ) (Q =

∫
ερdV ). Тогда получим теорему вириала для звезды:

U = −3(γ − 1)Q. (6)

2.4 Нейтронизация вещества

Однако звёздная эволюция в невырожденном ядре массивной звезды завершается
на элементах группы железа. Физическая причина этого - зависимость удельной энергии
связи внутри ядра от числа нуклонов; наиболее связанные ядра находятся как раз в
диапазоне A ' 55 ÷ 60 (56Fe, 58Fe, 60Fe, 62Ni и т.д.). Вещество в ядре звезды находится
в экстремальном состоянии: плотности вещества достигают величин ρ ∼ 3 · 109 г/см3,
температура - 8 · 109 К при массе ядра 1.5÷ 2 M� [2].
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Устойчивость обычной звезды обеспечивается равенством давления силы гравита-
ции и давления газа и излучения. Однако на поздних стадиях эволюции в предсверхно-
вых нарушается этот механизм, происходят необратимые реакции, которые не позволя-
ют звезде сдержать силу гравитации. Такими процессами являются процессы фотодис-
социации ядер железа и нейтронизация вещества

Фотодиссоциация железа - это реакция развала ядра железа под действием жёст-
кого гамма-кванта:

γ +56 Fe −→ 134He + 4n. (7)

Для такой реакции требуется 120МэВ энергии, что лишь ненамного выше температуры
в кремниевом слое звезды.

Уже при плотностях ρ ∼ 106 г/см3 электроны приобретают релятивистские ско-
рости из-за принципа Паули. Вырожденные электроны, начиная с некоторой пороговой
энергии (энергии Ферми EF ), нейтронизуют вещество посредством следующих реакций
[2]:

3He + e− −→ 3H + νe, EF = 18 МэВ, ρ > 106г/см3, (8)
4He + e− −→ 4H + n+ νe, EF = 20 МэВ, ρ > 1011г/см3, (9)
56Fe + e− −→ 56Mn + νe, EF = 4 МэВ, ρ > 1011г/см3. (10)

Из реакций видно, что происходящая в звезде нейтронизация вещества уменьшает
количество электронов, давление которых существенно влияет на устойчивость звезды,
так как снимается вырождение электронов. Таким образом, рост плотности вещества со-
провождается уменьшением давления, что приводит, исходя из формулы 6 при γ = 4/3,
к механической неустойчивости звезды. Нейтронизация вещества - основной физиче-
ский механизм начала коллапса звезды.

Рождающиеся нейтрино в центре коллапсирующей звезды беспрепятственно ухо-
дят из звезды, унося при этом с собой часть полной энергии коллапсара. Даже при
снятии вырождения электронного газа температурой [2] энергия продолжает уносить-
ся через антинейтрино в ходе бета-распадов. Таким образом, при прямых и обратных
бета-распадах происходят необратимые потери энергии за счёт ν и ν [3]. Такие процессы
называются урка-процессами. В этих реакциях сначала через электронный захват об-
разуется нестабильный изотоп, который в свою очередь через β− распад превращается
в исходное ядро:

e− + (A,Z) −→ (A,Z − 1) + νe (11)
(A,Z − 1) −→ (A,Z) + e− + νe. (12)

Объёмные потери энергии при урка-процессах сильно зависят от температуры [2]

Qurca ∼ ρT 6.

Резкая степенная зависимость Qurca от температуры приводит к тому, что на стадии
предсверхновой нейтринное излучение начинает превосходить фотонное излучение звез-
ды.
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3 Спектр нейтринного излучения
Наша задача: получить формулу спектра на Земле. Для этого рассмотрим сферу,

в центре которой находится наблюдатель. В этой сфере постоянно происходят взрывы
сверхновых. Будем считать, что сверхновые расположены внутри этой сферы. Нейтрино
(удобно отождествить их с излучением) испускаются изотропно при взрыве сверхновой.
Тогда полное число нейтрино, энергия которых лежит в диапазоне E ′ν(z) ÷ E ′ν + dE ′ν ,
испущенных на красном смещении z ÷ z + dz равна

dnν = RSN(z)(1 + z)3dNν(E
′
ν)(1 + z)−3dt, (13)

где RSN(z)(1+z)3 - это частота взрывов сверхновых на красном смещении z в сопутству-
ющем объёме; dNν(E

′) - количество нейтрино, испущенное одной сверхновой; множитель
(1 + z)−3 появился из-за расширения Вселенной.

Преобразуем данное выражение к виду

dnν = RSN(z)
dNν(E

′
ν)

dE ′ν

dt

dz
dE ′νdz. (14)

Уравнение Фридмана даёт связь между t и z [4]

dz

dt
= −(1 + z)H(z), (15)

где H(z) = H0

√
ΩM(1 + z)3 + ΩΛ, то есть в модели принимается нулевая кривизна про-

странства и пренебрегается вклад плотности излучения; в вычислениях используются
значения ΩM = 0.3, ΩΛ = 0.7.

Однако нас интересует не сама энергия E ′ν испускания нейтрино в момент взрыва
сверхновой, а энергия на Земле, где регистрируется данная частица. Из-за космологи-
ческого красного смещения связь между энергией нейтрино на Земле E ′ν и в момент
испускания выражается формулой

E ′ν = Eν(1 + z). (16)

Связь между числом нейтрино и потоком на Земле выражается соотношением

dFν
dEν

=
cdnν
dEν

. (17)

Таким образом, получаем спектр излучения на Земле

dFν
dEν

=
c

H0

∫ zmax

0

RSN(z)
dNν(E

′
ν)

dE ′ν

dz√
ΩM(1 + z)3 + ΩΛ

. (18)

Из этой формулы видно, что, зная функцию распределения сверхновых во Вселен-
ной RSN(z) и модель коллапса сверхновой dNν(E

′
ν)/dE

′
ν , можно однозначно определить

поток нейтрино на Земле.
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4 Распределение сверхновых во Вселенной
Распределение сверхновых задаётся эмпирической формулой [5]

RSN(z) = R−410−4 год−1Мпк−3


(1 + z)β, если z < 1

2β−α(1 + z)α, если 1 < z < 4.5

2β−α5.5α−γ(1 + z)γ, если 4.5 < z,

(19)

где α = 3.28, β = −0.26, γ = −7.8, R−4 ≈ 1.2.

5 Модель стандартного коллапса сверхновых
В рамках этой модели рассматриваются звёзды массы более (8 ÷ 10)M�. Такие

звёзды полностью исчерпывают все типы сверхновых, за исключением сверхновых типа
Ia.

Нейтронизация, как отмечалось выше, является основной причиной резкого (почти
мгновенного) увеличения светимости звезды в нейтринном канале излучения. Дальней-
шая эволюция звезды в модели стандартного коллапса, которая рассматривает сфери-
чески симметрическую не вращающуюся звезду, идёт следующим образом.

Рождающиеся нейтрино в предсверхновой можно условно разделить по энергии на
две группы: нейтрино низкий энергий (En � mnc

2) и нейтрино высоких энергий. Для
нейтрино низких энергий сечение рассеяние на свободных нуклонах можно оценить как
[2]

σn ≈
1

4
σ0

( Eν
mec2

)2

, (20)

где σ0 = 1.76 × 10−44см2. Реакции упругого рассеяния нейтрино, т.е. идущие без из-
менения энергии, увеличивают непрозрачность для нейтрино без заметного изменения
интенсивности излучения.

Рассеяние нейтрино высоких энергий на невырожденных электронах носят неупру-
гий характер из-за малой массы последних (Eν � mc2). Это приводит к термализации
нейтрино, приведению их в локальное термодинамическое равновесие с веществом. Ней-
трино как бы «запираются» внутри ядра звезды.

Дальнейшая эволюция звезды приводит к увеличению плотности внутри ядра звез-
ды. При плотностях порядка ядерных (ρnuc = 2.8× 1014г/см3) становятся существенны
эффекты вырождения нейтронов. Возросшее за короткое время давление внутри яд-
ра звезды теперь может противостоять давлению «падающих» на ядро внешних слоёв
звезды. Реакцией на резко возросшую упругость ядра является «отскок» внешних слоёв,
который, как считается, и является причиной сброса внешней оболочки и наблюдаемого
эффекта сверхновой.

Нетепловые нейтрино, рождённые в ходе неравновесной нейтронизации вещества
(〈Eν,e〉 ∼ 15÷20 МэВ), испускаются в первую секунду после начала коллапса (пока ядро
остается прозрачным для нейтрино). Большая часть нейтрино - тепловые нейтрино и ан-
тинейтрино всех сортов, испускаются с поверхности оптически толстой нейтриносферы
вокруг горячей протонейтронной звезды в первые 10÷20 с после коллапса. Равновесная
температура нейтриносферы для электронных и электронных антинейтрино составляет
около (3÷ 5)МэВ и около 6 МэВ для мюонных и таонных нейтрино и антинейтрино.
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5.1 Поток от одной сверхновой

Проинтегрированный по всему времени коллапса нейтринный поток от одной сверх-
новой хорошо аппроксимируется распределением Ферми-Дирака с нулевым химическим
потенциалом [6]

dNνi(E
′
νi

)

dE ′νi
=
Etot
ν

6

120

7π4

(E ′νi)
2

T 4
νi

(eE
′
νi
/Tνi )−1, (21)

где Etot = 3 × 1053 эрг - полная энергия, излучаемая через нейтринный канал; Tνe =
3.2 МэВ, Tνe = 5.0 МэВ, Tνµ,τ = Tνµ,τ = 6.0 МэВ [7], [8].

6 Ротационный сценарий взрыва сверхновой
В модели ротационного механизма взрыва сверхновой ключевую роль играет на-

чальное ненулевое вращение ядра звезды прародителя. Надо сказать, что на данный
момент теория эволюции звёзд никак не может предсказать количественно данное вра-
щение. Предполагается, что данное вращение сохранилось ещё со времени образования
звезды.

Во вращающемся ядре возникают все условия для коллапса ядра. Однако удар-
ная волна, возникшая в звезде, не приводит к коллапсу и взрыву сверхновой. Первая
основная нейтринная вспышка связана как раз с этим этапом. Вместо этого, возникшая
неустойчивость, связанная со вращением ядра, приводит к развалу звезды [9].

Условие неустойчивости звезды задаётся соотношением

β =
εrot
|εgrav|

≥ 0.27, (22)

где εrot - полная энергия вращения ядра, εrot - гравитационная энергия ядра. При вы-
полнении этого условия ядро звезды приобретает неустойчивое вращение, единый, в
первом приближении, сферически симметричный объект, приобретает форму «блина».
В простейшем случае этот «блин» распадается на двойную систему нейтронных звёзд.
Образовавшаяся двойная система в целом сохраняет начальный угловой момент, при
этом большая часть момента вращения коллапсара переходит в орбитальный момент
двойной системы.

Данная двойная система является источником мощного гравитационного излуче-
ния. В зависимости от распределения масс между двумя нейтронными звёздами раз-
нится время гравитационного сближения до слияния. В случае равного распределения
масс это время минимально и равно tgrav = 400с. Развитая ротационная модель взрыва
опирается на событие SN 1987 A, которое накладывает условие на tgrav = 4.7ч.

Дальнейшая эволюция двойной системы происходит так: вещество с одной ней-
тронной звезды с массой M2 перетекает на нейтронную звезду с массой M1 до того мо-
мента, пока масса M2 не станет равной некой критической, равной M∗

2 = 0.1M�. Если
нейтронная звезда достигает такой массы, то она испытывает незамедлительно ядерный
взрыв. Звезда M1, имеющая к данному моменту скорость v1 ≥ 1000км/с, претерпевает
коллапс по модели стандартного коллапса [10].

Рассмотрим первый нейтринный сигнал более подробно. До момента неустойчи-
вого поведения звезды в ядре происходили процессы нейтронизации вещества, высво-
бождающие огромное количество электронных нейтрино. Теперь при развале ядра до
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Рис. 1: Первые этапы эволюции системы в модели двойного коллапса

формы «блина», не испытывающие никакого рассеяния электронные нейтрино без поте-
ри энергии покидают поперёк «блина» толщу вещества. Поэтому в первом нейтринном
сигнале из-за процессов нейтронизации вещества из прозрачной для нейтрино области
будут выходить только электронные нейтрино; из непрозрачной области - все остальные
сорта, которые имеют эквипорциальное распределение по энергии. Вторая же вспышка
будет иметь эквипорциальное распределение нейтрино по энергии.

6.1 Вычисления нормировки сигналов двойного коллапса. Срав-
нение моделей

Для того, чтобы правильно проинтерпретировать SN 1987 A в рамках модели двой-
ного коллапса приходится принять полное отсутствие поглощения нейтринного излуче-
ния. Это можно объяснить тем, что первый коллапс происходит в момент неустойчивого
вращения ядра прародителя, которое, как было отмечено выше, вскоре принимает фор-
му «блина»; по этой причине для нейтрино действительно не составит труда вылетить
без перерассеяния поперёк «блина».

Аппроксимация численных расчётов даёт следующие потоки нейтрино и антиней-
трино соответственно

Φνe = 0.02329× 1053(E ′νe)
5(1 + eE

′
νe
/6.32381)−1 (23)

Φνe = 0.00129× 1053(E ′νe)
5(1 + eE

′
νe
/6.28215)−1 (24)

Φνe = Φνµ = Φνµ = Φντ = Φντ (25)

Из расчётов в [10] следует, что полное энерговыделение нейтрино в ходе первой
вспышки равняется EIνe = 3.14 × 1052 эрг, для всех остальных типов нейтрино эта
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Рис. 2: Последние этапы эволюции двойной системы

энергия равна EIνµ,τ = EIνµ,τ = 1.70× 1051 эрг.
Таким образом, в ходе первого коллапса выделяется энергия

EI ≈ 4.16× 1052 эрг. (26)

Вторая вспышка происходит по модели стандартного коллапса. Однако нам необ-
ходимо учесть тот факт, что полное энерговыделение в виде нейтрино в обеих моде-
лях равны (это предположение обосновано тем, что практически 100% гравитационной
энергии звезды уходит в нейтринное излучение, а энерговыделение всех сверхновых
примерно равно). Поэтому следует учесть нормировку на первую и вторую вспышки.

Пусть коэффициент α есть нормировочный множитель первой вспышки, β - второй
вспышки. Мы получили систему линейных уравнений{

α/β = EI/(E
tot − EI)

αEI + β(Etot − EI) = Etot.
(27)

Тогда α = 0.1692, β = 1.0508.
В итоге мы получили нормировочные коэффициенты для двух вспышек в модели

двойного коллапса

α(Φνe + 6Φνe) + β
6∑
i=1

dNνi(E
′
νi

)

dE ′νi
(28)

Тогда используя формулы 18, 19, 21, 28 рассчитываем необходимые нам спектры
и потоки нейтрино.
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Поток нейтрино, см−2c−1

Модель Стандартный коллапс Двойной коллапс
νe 26.56 54.85
νe 17.00 19.22
νµ 14.17 16.25
νµ 14.17 16.25
ντ 14.17 16.25
ντ 14.17 16.25

Сумма 100.22 139.06

Таблица 2: Сравнительная таблица потоков на Земле, рассчитанный по разным
моделям

Рис. 3: Спектр всех сортов нейтрино для разных моделей

Все сверхновые взрываются по двойному коллапсу

Все сверхновые взрываются по стандартному коллапсу
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7 Заключение
Основные результаты работы:

• получены формы спектров всех ароматов нейтрино от диффузного нейтринного
фона;

• получены значения потоков всех ароматов нейтрино;

На основе выведенной мною формулы 18, которая не зависит от модели коллапса,
могут быть проанализированы различные астрофизические сценарии взрывов сверхно-
вых. Основной упор в данной работе был сделан на сравнении моделей стандартного
и двойного коллапсов. Это мотивировано единственным хорошо изученным событием -
сверхновой SN 1987A, вспыхнувшей в Большом Магеллановом облаке. Её противоречи-
вый двойной нейтринный сигнал с разницей в 4.7 ч является прямым доказательством
несостоятельности стандартной модели взрыва. Конечно, в силу исключительности это-
го события, нельзя строго судить о характере поведения всех сверхновых, однако, оно
может служить критикой общепризнанного стандартного коллапса.

Бурно развивающаяся многоканальная астрономия позволит с разных сторон изу-
чить уже существующие концепты. Как было показано в работе, зная диффузный ней-
тринный сигнал на Земле можно определить механизмы взрывов сверхновых, но ней-
тринный сигнал также можно независимо оценить плотность звездообразования, дан-
ные о которой получена через электромагнитный канал. Это обстоятельство побуждает
дальше заниматься изучением астрофизикой звёзд.

Со своей стороны я получил итоговую формулу спектра нейтрино 18, изучил раз-
личные формы спектров в стандартном механизме, получил аппроксимирующие формы
спектров в первой вспышке двойного коллапса электронных нейтрино и антинейтрино,
получил численные значения потоков всех сортов нейтрино на Земле.

На данный момент точность экспериментов не позволяет различать такие низко-
энергетичные нейтрино, однако, есть надежда, что уже в ближайшем будущем будут
реализованы грандиозные проекты [11], [12], [13], [14], [15]. Их чувствительность уже
будет в состоянии различать по диффузному нейтринному фону истинный сценарий
взрывов или их линейную комбинацию. Возможно, что новые эксперименты возродят
уже давно забытые гипотезы взрывов сверхновых, которые позволят лучше понять фи-
зику сверхновых и нейтрино.
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